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A magneto-mechanically coupled material model for magnetic sensor
investigation
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We consider coupled micro-magneto-mechanics with the aim to understand the processes which underpin magnetic noise in
composite magnetoelectric sensors. We formulate a material model within the generalized standard material framework. This
approach ensures thermodynamic consistency. Using our material model, we study the interaction of domain walls with two
types of defects: geometrical defects and eigenstrains. We discuss the interaction and underlying effects in detail.
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1 Introduction

Measuring small magnetic fields (e.g. of heart and brain) requires sensors with high sensitivity and low noise. Typically
SQUID (superconducting quantum interference device) or OPM (optically pumped magnetometer) sensors are utilized for
these use cases. However, these magnetometers exhibit high complexity and operating expenses. Hence there is a demand
for alternative sensor concepts (cheap, easy-to-use) [10]. Composite magnetoelectric thin film sensors are one example for an
alternative concept. This sensor concept is based on the interaction of multiple coupled fields in the involved magnetostrictive
and piezoelectric thin film materials. The route starts with magnetic signals in the magnetostrictive material and proceeds via
mechanics and surface coupling to electric signals in the piezoelectric material.

Currently, one limiting factor for sensor performance is magnetic noise. This type of noise is caused by detrimental
magnetic processes that disturb the signal [2, 5, 13]. In particular these processes are intrinsic to the magneto-mechanical
material. Thus, we concentrate on the magneto-mechanical part and omit the piezoelectric part of the sensor principle for
our investigation. In this work we focus on the interaction of domain walls with various types of defects (as one of the
aforementioned detrimental magnetic processes).

2 Problem setting and kinematics
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Fig. 2: Kinematics of magnetization m

The coupled micro-magneto-mechanical problem is posed in the free space box Ω ⊂ R3 in which the material volume V ⊂ Ω
is embedded, see Fig. 1. Material volume and free space box have the external normals n resp. N . We define time to be in
the range [0, T ] ⊂ R. Three field quantities characterize the coupled problem: displacement u, magnetization m and scalar
magnetic potential φ

u : V × [0, T ] → R3, m : V × [0, T ] → S2, φ : Ω× [0, T ] → R, (1)

where S2 denotes unit sphere in R3. We formulate the kinematics of the mechanical sub-problem in the small strain setting.
Hence, we employ the strain tensor ε

ε =
1

2

(
∇u+ (∇u)⊤

)
(2)
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to describe deformation. Further, we assume an additive decomposition of strain

ε = εe + εm + ε⋆ (3)

into an elastic part εe, a magnetostrictive strain εm and an eigenstrain contribution ε⋆. As for the kinematics of the mag-
netic sub-problem, the magnetization m is restricted to the unit sphere (i.e. ∥m∥ = 1). Hence we express the evolution of
magnetization ṁ (and the accompanying vectors ȧ1, ȧ2) as follows

{ȧ1, ȧ2, ṁ} = θ̇ω × {a1,a2,m}, θ̇ω = θ̇1a1 + θ̇2a2, (4)

cf. Fig. 2. We adopt the exponential map algorithm to implement this kinematic constraint, cf. [6, 9, 11, 12].

3 Material modeling

We formulate the material model within the generalized standard material (GSM) framework [4,8]. Two contributions describe
the material behavior: the free energy Ψ = Ψex + Ψa + Ψd + Ψz + Ψel and dissipation potential Φ, see Tab. 1. The free
energy reflects conservative material behavior while the dissipation potential Φ represents dissipative material behavior. As a
result of the GSM approach, the second law of thermodynamics is automatically fulfilled.

We summarized the free energy rate Ψ̇ and the dissipation potential Φ in the time continuous rate potential Π = Ψ̇+Φ. Time
discretization yields the time discrete incremental potential Π∆ which we aim to optimize. From the potential optimization

Π∆ → stat
u,m,φ

with ∥m∥ = 1 (5)

we obtain three stationary points which are the weak forms of linear momentum balance, Landau-Lifschitz-Gilbert equation [3]
and Gauss’ law. We use these stationary points as residuals for global Newton-Raphson scheme.

Table 1: Contributions to the GSM formulation

exchange energy Ψex (∇m) =
∫
V
A ∥∇m∥2 dV

anisotropy energy Ψa(m) =
∫
V
K1

(
1− (m · ea)2

)
dV

demagnetizing energy Ψd(m,∇φ) =
∫
V
µ0∇φ ·Msm dV − 1

2

∫
Ω
µ0∥∇φ∥2 dV

with demagnetizing field Hd = −∇φ

Zeeman energy Ψz(m) =
∫
V
−µ0Msm ·H ′ dV

with externally applied field H ′

elastic energy Ψel(ε,m) =
∫
V

1
2 ε

e : C : εe dV

with εm = 3
2λs

(
m⊗m− 1

3I
)

dissipation potential Φ(ṁ) =
∫
V

η
2ṁ · ṁ dV

4 Numerical experiments

4.1 Implementation

For the solution of the micro-magneto-mechanical problem we use the finite element method. Specifically we use ParFEAP
8.6.1j (MPI-parallel version of FEAP [14]) which is supported by PETSc 3.13.2 [1]. For spatial discretization we employ
tetrahedral elements and linear shape functions. For time derivatives we adopt a finite difference scheme. In our implementa-
tion there are six degrees of freedom (dof) per node: displacement (3 dof), scalar magnetic potential (1 dof) and magnetization
(2 dof).

4.2 Material parameters and problem specification

In the following numerical examples we consider a stack of free space, magneto-mechanical film, mechanical substrate and
free space, see Fig. 3. The (estimated) material parameters of magnetic material (FeCoSiB) and substrate are given in Tab. 2.
We use periodic boundary conditions in e1- and e2-direction to obtain results without closure domains and effectively rep-
resent an infinitely extended composite. To implement the periodic boundary conditions, we adapt the mesh files such that
the periodically repeated nodes share the same node number, cf. [7]. We choose the pattern shown in Fig. 4 to prescribe the
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Fig. 3: Free space – film – substrate
– free space stack, periodic boundary
conditions in e1- and e2-direction
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netization m(x, 0) in magneto-
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Fig. 5: Applied field H ′ = H ′(t)e1 with t0 = 10−9 s,
τ = 3 · 10−7 s

initial magnetization m(x, 0). This pattern is compatible with the periodic boundary conditions and affords us two easily
controllable domain walls. We need the latter to investigate the interaction of domain walls and defects. To put the domain
walls in motion we exert a sinusoidal applied field H ′ = H ′(t)e1, see Fig. 5. This type of applied field yields a reciprocating
domain wall motion and allows multiple interactions with defects. We define the onset of loading at t0 to afford the system an
initial relaxation time in which it assumes an equilibrium state.

Table 2: Estimated material parameters

FeCoSiB substrate

A exchange constant 1.5 · 10−11 J
m –

Ms spontaneous magnetization 1.5 · 106 A
m –

K1 anisotropy constant 3 · 102 J
m3 –

ea easy axis e1 –

η viscosity parameter 1 · 10−5 J·s
m3 –

λs saturation magnetostriction 30 · 10−6 –

λ first Lamé parameter 172GPa 150GPa

µ second Lamé parameter 54GPa 50GPa

4.3 Domain wall interaction with geometrical defects

To study the interaction of domain walls with defects we need to introduce defects into the magnetic film. As prototypical
defects we consider two cylindrical holes with radius 10 nm that penetrate entire thickness of the film, cf. Fig. 6. The interac-
tion between domain walls and defects is attractive since it is energetically favorable for domain walls to attach to the defects
(reduces e.g. exchange energy). For the applied field magnitude we choose H ′

max = 1 · 10−2 A/µm.
In Fig. 6 we display a time series of the two prescribed domain walls interacting with the defects, driven by the applied field.

On the left of Fig. 6 we observe that the upper domain wall leaps forward and attaches to defect due to attractive interaction.
In the center of Fig. 6 both domain walls are attached to defects and resist the applied field. We observe domain wall curvature
in the vicinity of the holes. On the right of Fig. 6 the upper domain wall has overcome the defect due to sufficiently large
applied field (∥H ′∥ ≈ 9 · 10−3 A/µm).

www.gamm-proceedings.com © 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH.
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4 of 6 Section 7: Coupled problems

Fig. 6: Time series: interaction of domain walls with cylindrical holes, time points from left to right: 7.6 · 10−9 s, 5.4 · 10−8 s, 5.7 · 10−8 s,
displayed: scalar magnetic potential φ and magnetization vectors m

4.4 Domain wall interaction with eigenstrain

Fig. 7: Left: expansive eigenstrain α > 0 yields circumferential tensile stress σφφ and circumferential stress-induced anisotropy Kσ , right:
contracting eigenstrain α < 0 yields circumferential compressive stress σφφ and radial stress-induced anisotropy Kσ

Besides geometrical defects we are also interested in the interaction of domain walls with local eigenstrains. To investigate this
type of interaction we prescribe an eigenstrain ε⋆ = αI in a spherical volume with radius 5 nm in the magneto-mechanical
film. In the expansive case (α > 0) we obtain circumferential tensile stresses σφφ around the eigenstrains. These stresses result
in a circumferential stress-induced anisotropy Kσ , see Fig. 7 (left). For the contracting case (α < 0) we obtain circumferential
compressive stresses σφφ around the eigenstrains. The stress-induced anisotropy Kσ is aligned in radial direction for this
case, see Fig. 7 (right).

The placement of the eigenstrain spheres is the same as the placement of the cylindrical holes in section 4.3. In e3-direction
the eigenstrain spheres are located in the center of the film thickness. For the applied field magnitude we choose in this case
H ′

max = 2 · 10−2 A
µm .

In Fig. 8 we show a time series of the two domain walls interacting with expansive eigenstrains (α = 0.5), driven by the
applied field. The character of the interaction is similar to Fig. 6, i.e. attractive interaction. The applied field to overcome the
defect is similar to section 4.3 as well (∥H ′∥ ≈ 8.9 · 10−3 A/µm). We presume that the attractive interaction occurs because
the circumferential anisotropy fits well into the structure of the domain walls.

The time series for the contracting eigenstrain (α = −1) is displayed in Fig. 9. On the left of Fig. 9 the domain walls resist
attaching to the eigenstrain volumes due to repulsive interaction. Even with larger applied field the domain walls still resist the
interaction with the eigenstrain volumes, see Fig. 9 (center). The curvature of the domain walls is larger than in all previous
examples. However, with sufficiently large applied field (∥H ′∥ ≈ 9.7 · 10−3 A/µm) the domain wall overcomes this defect
as well, see Fig. 9 (right). We suppose that the repulsive interaction is again due to the stress-induced anisotropy. Albeit in
this case, the radial anisotropy of the contracting eigenstrain does not suit the domain wall structure.

Finally we must make one last remark. The eigenstrains (and corresponding stresses) considered here are rather large.
We found that strains in such large orders of magnitude were required to achieve an influence of eigenstrain on domain wall
motion. The following two reasons appear plausible. Firstly, the coupling between mechanics and magnetics by virtue of
the magnetostriction constant λs is weak. Hence, large strain is required to compensate. Secondly, the volume in which the
eigenstrain is active is very small. Thus, the volume in which mechanics can effectively influence magnetics is very small.

© 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH. www.gamm-proceedings.com
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Fig. 8: Time series: interaction of domain walls with expansive eigenstrain (α = 0.5), time points from left to right: 9 ·10−9 s, 2.3 ·10−8 s,
2.5 · 10−8 s, displayed: scalar magnetic potential φ and magnetization vectors m

Fig. 9: Time series: interaction of domain walls with contracting eigenstrain (α = −1), time points from left to right: 1.2 · 10−8 s,
2.5 · 10−8 s, 2.7 · 10−8 s, displayed: scalar magnetic potential φ and magnetization vectors m

5 Summary and outlook

With the present work we showcased our micro-magneto-mechanically coupled material model. The model formulation within
the GSM framework ensures thermodynamic consistency. For the unit sphere constraint of the magnetization we apply the
exponential map algorithm. The focus of the present work was the investigation of interaction between domain walls and
defects. In two numerical examples we investigated the interaction of domain walls with geometrical defects as well as local
eigenstrains. In particular we found that the character of the interaction with eigenstrains depends on the sign of latter.

To gain a deeper understanding of the domain wall interaction with eigenstrains, we intend to investigate further examples
in the future (different geometries and eigenstrain configurations). Moreover, we strive to compute noise spectra for the
presented interactions types.
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