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Abstract. We formulate a material model for micro-magneto-mechanics based on the general-
ized standard material approach. Our model includes exchange, elastic, anisotropy, demagne-
tizing and Zeeman energy. Furthermore we account for dissipative micro-magnetic behavior by
means of a dissipation potential. For the constrained optimization problem w.r.t. magnetization
we rely on the exponential map algorithm. We demonstrate our ideas with numerical examples.
In particular we apply our model to a thin film composite. With this composite we represent the
magneto-mechanical part of a magneto-electric composite sensor (resp. small sensor segment).
Our numerical experiments focus on FeCoSiB as the magnetostrictive material. We discuss the
coupling effects for the considered thin film composite in detail.

1 INTRODUCTION

Detecting biomagnetic fields of heart and brain requires highly sensitive magnetic field sen-
sors such as e.g. SQUID magnetometers (superconducting quantum interference device). High
cost and technical effort (e.g. for cooling) associated with these devices limits access to mag-
netic diagnostic facilities. Easy-to-handle and cost-effective alternative sensor concepts are re-
quired to make magnetoencephalography and magnetocardiography widely available. Composite
magneto-electric thin film sensors are one such alternative [1]. These sensors use a route from
magnetic signals via mechanics to electric signals [2]. To further improve sensor performance, it
is imperative to reduce noise. In particular noise caused by magnetic processes and interactions
within the magnetostrictive material is of interest [3].
To reduce noise we need to understand its origin. High-performance modeling and simulation of
micro-magneto-mechanics can make a valuable contribution in this respect. To approach mod-
eling of micro-magneto-mechanical materials, the generalized standard material (GSM) frame-
work [9, 10] offers great potential. The multitude of energy contributions governing magneto-
mechanics can easily be incorporated. Previously Miehe et al. [13], Miehe and Ethiraj [7] and
Ethiraj et al. [8] have adopted this approach. From the GSM framework a constrained op-
timization problem arises (norm 1 constraint for magnetization). A similar constraint, which
occurs for the director in shell theory, was addressed by Simo et al. [4, 5] using the exponential
map algorithm. The idea was used in micro-magnetics by Lewis and Nigam [6] and Miehe and
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Ethiraj [7]. In order to set up our material model and lay the foundation for the investigation
of magnetic noise we follow these two ideas (GSM, exponential map).

2 GEOMETRY AND KINEMATICS

We consider a material volume V ⊂ Ω embedded in free space Ω with outward facing nor-
mals n resp. N , see Fig. 1. Furthermore we denote by [0, T ] ⊂ R the time range. We are

V

∂V

Ω
∂Ωn

N

Figure 1: Material volume V embedded in free space Ω

interested in the following three field quantities: displacement u, scalar magnetic potential ϕ
and magnetization m

u : V × [0, T ]→ R
3 (x, t) 7→ u(x, t) (1)

ϕ : Ω× [0, T ]→ R (x, t) 7→ ϕ(x, t) (2)

m : V × [0, T ]→ S2 (x, t) 7→m(x, t) with ‖m‖ = 1 (3)

where S2 denotes the unit sphere in R3. Hence we are interested in solving a coupled prob-
lem which comprises mechanics, vacuum magnetics and material magnetics. We describe the
kinematics of deformation within the small strain setting using the symmetric displacement
gradient

ε =
1

2

(
∇u+ (∇u)⊤

)
(4)

and moreover assume an additive decomposition of strain ε

ε = ε
e + ε

m + ε
⋆ (5)

into an elastic contribution ε
e, a magnetostrictive part εm and an eigenstrain contribution ε

⋆.
As indicated in Eq. (3), the kinematics of the magnetization vector m are characterized by the
constraint to the unit sphere S2 [6]. We use the rotation vector

θω = θ1a1 + θ2a2 (6)

to describe the rotation of the magnetization vector m on the unit sphere, see Fig. 2, left. More
specifically the rotation vector θω is used in tandem with the exponential map to update the
local coordinate system [6, 7]

{a1,a2,m} ← exp(θω̂){a1,a2,m} (7)
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Figure 2: Left: rotation vector θω in local coordinate system {a1,a2,m}, right: application of expo-
nential map to m

where

exp(θω̂) = ω ⊗ ω + cos(θ)(I − ω ⊗ ω) + sin(θ)ω̂ (8)

ω̂ = −ǫ · ω = −ǫijkωkei ⊗ ej . (9)

We use ǫijk to denote the Levi-Civita symbol. An example of an exponential map update is
illustrated in Fig. 2, right. By applying the update in Eq. (7) to the magnetization m

exp (θω̂)m = cos(θ)m+ sin(θ)ω ×m , (10)

we observe that m remains on the unit sphere.

3 GENERALIZED STANDARD MATERIAL FORMULATION

To model the material behavior, we follow the generalized standard material approach [9, 10].
We describe the material behavior by two contributions: the free energy Ψ and the dissipation
potential Φ (resp. their volume densities ψ and φ). By following the GSM approach, we obtain
a material model that automatically fulfills the second law of thermodynamics. In the following
we present and briefly discuss the considered energy contributions.
The exchange energy

Ψex (∇m) =

∫

V

A ‖∇m‖2 dV (11)

reflects the exchange interaction between neighboring magnetic moments. This energy contribu-
tion represents the propensity of neighboring magnetization vectors m to align with each other.
To represent the mechanical behavior of an elastic solid, we include the elastic energy

Ψel(ε,m) =

∫

V

1

2
ε
e : C : εe dV (12)

where C denotes the stiffness tensor (here: isotropic). To express the elastic strain ε
e in terms

of displacement u and magnetization m, we use the additive decomposition of strain in Eq. (5).
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We further assume that the magnetostrictive strain ε
m reads [11]

ε
m =

3

2
λs

(
m⊗m−

1

3
I

)
(13)

where λs denotes the saturation magnetostriction. The next contribution, the anisotropy energy

Ψa(m) =

∫

V

K1

(
1− (m · ea)

2
)
dV , (14)

tends to align magnetization vectors m with a preferential direction (easy axis ea). Here we
consider uniaxial anisotropy. In order to reflect the energy of the demagnetizing fieldHd = −∇ϕ
in the material model, we include

Ψd(m,∇ϕ) =

∫

V

µ0∇ϕ · (Msm) dV −
1

2

∫

Ω

µ0‖∇ϕ‖
2 dV . (15)

This energy comprises both the interaction of the demagnetizing field Hd with magnetization
m in the material volume V as well as the demagnetizing energy in free space Ω. To represent
the interaction of magnetization m with an externally applied field H

′ we consider the Zeeman
energy

Ψz(m) =

∫

V

−µ0Msm ·H
′ dV . (16)

For the last ingredient of the GSM formulation, the dissipation potential, we assume the form
[7]

Φ(ṁ) =

∫

V

η

2
ṁ · ṁ dV , (17)

which reflects the dissipative nature of magnetization changes. All presented energies and po-
tentials contribute to the time continuous rate potential Π

Π = Ψ̇ + Φ (18)

= Ψ̇ex(∇m) + Ψ̇el(ε,m) + Ψ̇a(m) + Ψ̇d(m,∇ϕ) + Ψ̇z(m) + Φ(ṁ) . (19)

With computational solution in mind, we discretize the time range [0, T ] into discrete points
t0, . . . , tn, tn+1, . . . , T with time step ∆t = tn+1 − tn. Furthermore we apply a finite difference
scheme to approximate the time derivatives

Π ≈
Ψ−Ψn

∆t
+Φ

(
m−mn

∆t

)
(20)

and obtain the time discrete incremental potential Π∆ by multiplication with ∆t. The stationary
points of the incremental potential

Π∆ = Ψ+Φ∆(m−mn) −→ stat
u,m,ϕ

(21)
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serve as residuals for the global Newton-Raphson scheme. Note that this is a constrained
optimization since ‖m‖ = 1 is required (cf. exponential map Eq. (7) and Fig. 2, right). The
variation δuΠ∆ = 0 yields the weak form of the linear momentum balance. We obtain the weak
form of the Landau-Lifschitz-Gilbert equation [12] (without precession) from δmΠ∆ = 0. The
variation δϕΠ∆ = 0 yields the weak form of Gauss’ law for magnetism.

4 IMPLEMENTATION AND FINITE ELEMENT METHOD

For solution of the coupled problem we rely on the finite element method (FEM). The com-
putational domain Ω ⊂ R3 is discretized by tetrahedral elements. For the fields of interest we
use linear shape functions. In each node we consider six degrees of freedom: displacement (3
dof), scalar magnetic potential (1 dof) and the two angles θ1 and θ2 in Eq. (6) (resp. their incre-
mental versions, 2 dof). Residuals and linearizations required for the Newton-Raphson scheme
are computed and subsequently implemented by hand.
We use the finite element program ParFEAP 8.6.1j (MPI parallel version of FEAP) in tan-
dem with PETSc 3.13.2. Restarted GMRES preconditioned with block Jacobi (default) and
BiCGSTAB preconditioned with block Jacobi showed a favorable behavior for the solution of
the linear system.

5 NUMERICAL EXAMPLES

In this section we discuss two examples illustrating the coupling of magnetics and mechan-
ics in our material model. To this end we focus on the magnetostrictive material FeCoSiB
((Fe90Co10)78Si12B10). An (estimated) parameter set for FeCoSiB is given in Tab. 1, left. For

Table 1: Left: estimated FeCoSiB parameters, right: estimated substrate parameters

A 1.5 · 10−11 J
m

Ms 1.5 · 106 A
m

K1 3 · 102 J
m3

ea e1

η 1 · 10−5 J·s
m3

λs 30 · 10−6

λ 172GPa

µ 54GPa

λ 150GPa

µ 50GPa

the two numerical examples we consider a magneto-mechanical thin film on top of a mechan-
ical substrate. An (estimated) parameter set for the substrate is displayed in Tab. 1, right.
The film-substrate assembly is embedded in a free space box, see Fig. 4, left. We initialize the
magnetization m of the magneto-mechanical thin film according to Fig. 4, right. For external
loading by eigenstrain ε

⋆ resp. by applied magnetic field H
′ we use the ramp function illustrated

in Fig. 3.
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timet0 t0 + T

H ′
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Figure 3: Loading function for applied field H
′ (t0 = 1 · 10−9 s, T = 1 · 10−7 s, H ′

max
= 5 · 10−2A/µm)

resp. eigenstrain ε
⋆ (t0 = 1 · 10−9 s, T = 1 · 10−9 s, εmax = 0.5%)

0.01µm

1µm
1µm

0.05µm
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e2e3
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4.06µm
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m

Figure 4: Left: magneto-mechanical film (dark gray) on mechanical substrate (light gray) embedded in
free space box, right: initialization of magnetization m

5.1 Mechanics influences micro-magnetics

In this first example we illustrate the influence of the mechanical problem on the magnetic
problem. To this end we apply an eigenstrain ε

⋆ and observe the effect on the magnetic potential
ϕ and the magnetization m. We prescribe the eigenstrain ε

⋆ in the magneto-mechanical thin
film according to

ε
⋆ =̂



ε(t)

−νε(t)
−νε(t)


 (22)

where ε(t) follows the ramp function given in Fig. 3 (with t0 = 1 · 10−9 s, T = 1 · 10−9 s,
εmax = 0.5%). We display the results in Fig. 5. The top row shows the relaxed state (just before
loading begins). We observe very little deformation and small normal stress σ11 in 1-direction
(horizontal). Magnetically the structure is in a low energy state that avoids demagnetizing field
(4 domain cross state). The bottom row of Fig. 5 illustrates the final state (eigenstrain at max-
imum value εmax). As a result of the eigenstrain, the film elongates in 1-direction (horizontal).
Since the substrate is not subject to eigenstrain, it resists the elongation of the film. This results

6



Christian Dorn and Stephan Wulfinghoff

-4e+6
-3e+6
-2e+6
-1e+6
0
1e+6
2e+6
3e+6
4e+6
5e+6

st
re

ss
 1

1 
[P

a]

-0.0012

-0.0008

-0.0004

0

0.0004

0.0008

0.0012

ph
i [

A
]

-0.0012

-0.0008

-0.0004

0

0.0004

0.0008

0.0012

ph
i [

A
]

-5e+8
-4e+8
-3e+8
-2e+8
-1e+8
0
1e+8
2e+8
3e+8
4e+8

st
re

ss
 1

1 
[P

a]

-0.0028

-0.0021

-0.0014

-0.0007

0

0.0007

0.0014

0.0021

0.0028

ph
i [

A
]

-0.0028

-0.0021

-0.0014

-0.0007

0

0.0007

0.0014

0.0021

0.0028

ph
i [

A
]

Figure 5: Top row: relaxed state at t = 1 · 10−9 s, bottom row: final state at t = 2.2 · 10−9 s, left: stress
σ11, warped by displacement u with factor 25, center: scalar magnetic potential ϕ, right: magnified lower
right quarter, ϕ with magnetization vectors m (m only for every 7th node to improve visibility)

in free deformation of the film at the top free surface and restricted deformation at the shared
surface with the substrate. Hence the film-substrate assembly bends. Moreover this mode of
deformation leads to compressive stress σ11 in the film and tensile stress σ11 in the substrate.
In Fig. 5, bottom center and right, we observe that the resulting stress-induced anisotropy in
2-direction (vertical) has strong influence on the magnetic potential ϕ and the magnetization
m. Thus, the mechanical loading has influenced the magnetic state.

5.2 Micro-magnetics influences mechanics

With this second example we showcase the impact of the magnetic problem on the mechanical
problem. The idea is to apply an external magnetic fieldH

′ and study the resulting displacement
u and stress σ11. We apply the following external magnetic field

H
′ = H ′(t)e1 (23)

where H ′(t) is characterized by the ramp function in Fig. 3 (with t0 = 1 · 10−9 s, T = 1 · 10−7 s,
H ′

max = 5 · 10−2 A/µm). Fig. 6 depicts the results. The top row shows again the relaxed state
(just before load onset). This state is equivalent to the relaxed state in Fig. 5 and included
here to facilitate the comparison to the bottom row. Note that due to the large warp factor the
displacement is discernible in Fig. 6, top right. The bottom row in Fig. 6 displays the final state
with maximum applied field H ′

max. On account of the applied field H
′ the magnetization m is

mostly aligned in 1-direction (horizontal). This alignment leads to a magnetostrictive strain ε
m

in 1-direction, cf. Eq. (13). The film elongates in 1-direction and the substrate restricts the free
deformation at the shared surface. As a result the film-substrate assembly bends. Furthermore
we again observe compressive stress σ11 in the film and tensile stress σ11 in the substrate. Hence,
the magnetic loading has influenced the mechanical state.
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Figure 6: Top row: relaxed state at t = 1 · 10−9 s, bottom row: final state at t = 1.8 · 10−7 s, left: scalar
magnetic potential ϕ, center: magnified lower right quarter, ϕ with magnetization vectors m (m only
for every 7th node to improve visibility), right: stress σ11, warped by displacement u with factor 5000

We want to make two additional remarks. Firstly, note that stress-induced anisotropy similar to
the above example in section 5.1 occurs here as well. This anisotropy would align magnetization
m in 2-direction (vertical). However, the applied field H

′ is sufficiently strong to overcome this
effect. Second note: the magnetization m is not fully aligned in 1-direction (horizontal). To
achieve more stringent alignment, a stronger applied field H

′ would be required. However, to
illustrate the micro-magneto-mechanical coupling, the chosen setup is adequate.

6 CONCLUSIONS

In this work we have showcased a material model for micro-magneto-mechanics. The model
formulation as a generalized standard material ensures thermodynamically consistent mate-
rial behavior. We include exchange, elastic, anisotropy, demagnetizing and Zeeman energy to
represent conservative behavior. Dissipative magnetic behavior is reflected in the dissipation
potential. We approach the constrained optimization w.r.t. magnetization using the exponential
map algorithm.
We have demonstrated our material model with two numerical examples which show that the
coupling of micro-magnetics and mechanics is working well. Our reliable and physically plau-
sible material model provides the basis for investigation of noise caused by magnetic processes
and interactions. In future work we intend to study the interaction of domain walls and defects
(geometric imperfections, surface roughness, local eigenstrains).
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