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Abstract: Electroanatomical mapping is a method for creating a model of the electrophysiology of the
human heart. Medical professionals routinely locate and ablate the site of origin of cardiac arrhyth-
mias with invasive catheterization. Non-invasive localization takes the form of electrocardiographic
(ECG) or magnetocardiographic (MCG) imaging, where the goal is to reconstruct the electrical activity
of the human heart. Non-invasive alternatives to catheter electroanatomical mapping would reduce
patients’ risks and open new venues for treatment planning and prevention. This work introduces
a new system state-based method for estimating the electrical activity of the human heart from
MCG measurements. Our model enables arbitrary propagation paths and velocities. A Kalman filter
optimally estimates the current densities under the given measurements and model parameters. In
an outer optimization loop, these model parameters are then optimized via gradient descent. This
paper aims to establish the foundation for future research by providing a detailed mathematical
explanation of the algorithm. We demonstrate the feasibility of our method through a simplified
one-layer simulation. Our results show that the algorithm can learn the propagation paths from the
magnetic measurements. A threshold-based segmentation into healthy and pathological tissue yields
a DICE score of 0.84, a recall of 0.77, and a precision of 0.93.

Keywords: biomagnetism; magnetocardiography (MCG); noninvasive cardiac diagnostics; Kalman
filter; gradient descent; optimization

1. Introduction
1.1. Motivation

Over the past century, our understanding of the human heart has increased dramat-
ically. Today, we can diagnose and treat many more diseases than a hundred years ago.
Despite this, heart disease remains the leading cause of death [1]. Cardiac arrhythmias
may occur as a consequence of underlying heart disease such as cardiomyopathy or be
a primary phenomenon such as in long QT syndrome, an inherited ion channel disorder.
Accurately diagnosing arrhythmias often requires using invasive electroanatomical map-
ping techniques, thereby putting the patient at risk for complications such as bleeding
or infection.

Non-invasive methods that provide the same result would spare them the risks associ-
ated with invasive measurements [2,3]. In combination with Stereotactic Body Radiation
Therapy(SBRT) [4], this could potentially allow for completely non-invasive treatment
of cardiac arrhythmias [5,6]. These methods would also allow measurements in cases
where they are not medically indicated, providing an excellent opportunity for research
and prevention.
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1.2. State of the Art

The gold standard for electroanatomical mapping is invasive catheterization with
systems such as EAMS, EnSite Velocity®, and CARTO®3. By tracking the position of the
catheter and measuring the potential of the myocardium with the catheter head, a computer
program reconstructs a map of the local activation time. Medical doctors can then use this
information to select the region for ablation. To minimize risk and stress for the patients,
mapping and ablation are usually performed during the same procedure. Therefore,
an extensive analysis of the data prior to ablation is not possible. The invasive nature of
this method also prevents its use as a diagnostic measurement. The reported accuracies of
commercial systems are between 1 mm and 2 mm, while the reported threshold for clinical
relevance is 3 mm [7].

Non-invasive measurements aim to reconstruct electrical activity inside the my-
ocardium indirectly from data such as electrocardiography (ECG), magnetocardiography
(MCG) and magnetic resonance imaging (MRI). While the MRI data is used to construct a
spatial model of the heart, the MCG or ECG data is used to reconstruct the electrical activity
of the heart. The use of a patient-specific torso model is necessary to accurately calculate
body surface potentials from myocardial currents [8–10]. Since the relative permeability of
the human torso does not vary much, not including a torso model incurs fewer errors for
forward magnetocardiographic models [11]. For this reason, we will focus on magnetic
measurements [12], although an extension to include electric measurements might prove
beneficial [11,13,14].

There are different approaches to solving the problem of non-invasive electroanatomi-
cal mapping. One way to circumvent the prohibitively large number of unknown parame-
ters is to compute the current density distribution from a low-dimensional set of parameters.
Gillette et al. [15] use a sophisticated electrophysiological model to compute the distribution
of cardiac sources and ECG potentials over time. They then use parameter sampling to
match the simulated ECG signals to the measurements. A major advantage of this digital
twin approach is that the optimized parameters have well-understood electrophysiological
meanings. The main limitation of this approach is the poor scaling of parameter sampling to
higher-dimensional parameter vectors. Gillette et al. acknowledge that accurate modeling
of substrate-based diseases would require regions of deviating parameters. At the opposite
end of the spectrum from digital twins, there are supervised machine-learning approaches.
Instead of fitting meaningful electrophysiological parameters to the measurements, mod-
els, usually deep neural networks, are trained to predict cardiac sources directly from
non-invasive measurements. For example, Chen et al. [9] trained a convolutional neural
network on pairs of heart and body surface potentials from five pigs. This approach is
not limited to specific types of diseases, such as the cardiac digital twin approach, since
no explicit assumptions about propagation pathways or mechanisms are made. The main
challenge is acquiring suitable training data.

1.3. Contributions

In this paper, we present the mathematical foundation of a novel algorithm to esti-
mate the current density distribution in myocardial tissue from MCG measurements. We
demonstrate the capabilities and limitations using a simplified simulation. The medical
problem we address primarily is the localization of arrhythmogenic tissue.

Similar to the cardiac digital twinapproach, the parameters of our model have an
electrophysiological meaning. Unlike the cardiac digital twin approach, these parameters
can be different for each voxel, allowing for inhomogeneities in the myocardial tissue. This
is possible because we do not have to sample the parameter space. Intead, we optimize
the model parameters using gradient descent. In contrast to supervised machine learning
approaches, no access to heart surface potentials is required.
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2. Methods

We divide the myocardium into Nv equally sized voxels. For each voxel, the three-
dimensional current density jv(n) = [jv,x(n), jv,y(n), jv,x(n)]⊺ is tracked, with n ∈ [0 . . . Nm−
1], where Nm is the number of considered time steps, and v ∈ [0 . . . Nv − 1] is the voxel
index. The vector j(n) = [j0(n)⊺, . . . , jNv−1(n)⊺]⊺ is the concatination of these current den-
sities, and the matrix J = [j(0), . . . , j(Nm − 1)]⊺ is the vector of current densities over time.
Similarly Z = [z(0), . . . , z(Nm − 1)]⊺ denotes all measurements over time. The measure-
ment vector for one time step is written as z(n) = [z0(n), . . . , zNs−1(n)]⊺, where Ns is the
number of individual sensors. The measurements can be written as z(n) = d(n) + s(n),
where d(n) is the desired signal and s(n) is the noise signal.

A forward model maps the estimated current densities ĵ into the measurement space
through a measurement matrix H, resulting in the estimated measurements ẑ:

ẑ(n) = Hĵ(n). (1)

Obtaining the estimated current densities by computing the pseudoinverse of the
measurement matrix H and multiplying it by the measurements z is not feasible:

ĵ(n) = H−1z(n). (2)

The reason for this is the ill-posed nature of the problem. Instead, the problem of
non-invasive measurements is stated as finding the, in a sense, best estimate of J for some
given measured signals Z:

Ĵ ← arg min
Ĵ
L
(

Ĵ, Z
)
. (3)

2.1. Overview

The proposed current density estimation algorithm consists of three main parts: the
Model Initialization, the State Estimation , and the Model Refinement (cf. Figure 1).

The Model Initialization uses image data I , and knowledge of the electrophysiology
of a healthy heart to construct the initial state space model M̂(0). In the State Estimation
part, a sparse Kalman filter estimates the current densities Ĵ(i) from the model M̂(i) and the
measurements Z, where the superscript i indicates the epoch. Using the estimated current
densities Ĵ(i) and the measurements Z, the new model M̂(i+1) is calculated in the Model
Refinement block. The main loop consists of the steps State Estimation and Model Refinement.
These two steps execute alternately. After termination, the final estimated current densities
Ĵ(∞) and the final model M̂(∞) can be used for further analysis.

2.2. Forward Model

The forward model describes the mapping of the current densities j into the mea-
surements z. The measurement vector consists of Ns magnetic measurements at posi-
tions Ps = [ps,0

⊺, . . . , ps,Ns−1
⊺]⊺ with orientations Os = [os,0

⊺, . . . , os,Ns−1
⊺]⊺.We calculate

the magnetic fields using a superposition of Biot-Savart’s law for all voxels:

zi(n) =
µ0

4π

Nv−1

∑
k=0

os,i
⊺jk(n)×

ps,i − pv,k

||ps,i − pv,k||32
V, (4)

where Nv is the number of voxels pv,k is the position of the k-th voxel, and V is the volume
of the voxels.

Using Equation (4) we calculate measurement matrix entries during the Model Initial-
ization. In the State Estimation and Model Refinement step, the measurement matrix is
used to calculate the estimated measurements by applying Equation (1).
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Figure 1. Schematic overview of the current density estimation algorithm.

2.3. System Model

The system model describes the prediction of system states j(n|n− 1). The system
model needs to facilitate arbitrary propagation paths and propagation velocities to ac-
curately model the propagation of the action impulse through the myocardium [16–18].
Modeling the interactions between all voxels becomes intractable as the number of voxels
increases. Therefore, we use First-order Thiran all-pass filters [19] to model the interaction
between neighboring voxels.

These infinite impulse response (IIR) filters have an amplitude response of one over the
whole frequency range and a constant group delay for 0 ≤ f ≲ fs/10. Within these limits,
arbitrary group delays τ ≥ 1 sample can be achieved by applying the following equations:

y(n) = a ·
(

ĵ(n− k− 1)− y(n− 1)
)
+ ĵ(n− k− 2). (5)

Equation (5) is written for a single all-pass output y. The parameter k is the integer
part of the desired group delay τ, while the parameter a determines the fractional part of
the group delay [19]:

a =
1− (τ mod 1)
1 + (τ mod 1)

. (6)

We calculate the predicted current densities by applying:

ĵv(n) = Cvyv(n) + bvu(n). (7)

Here, ĵv(n) is the three-dimensional current density in x-, y-, and z-direction in one
voxel v. The vector yv ∈ R243 contains the all-pass outputs that contribute to jv. The
sparse matrix Cv ∈ R3×243 contains the 243 gains c, that map the all-pass outputs into the
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current densities. The influence of the control function u(n) on the current density ĵv(n) is
modelled by the corresponding entry in the control vector bv.

The control function determines the shape of the action potential. We use Myokit [20]
to calculate an action potential based on the dynamic O’Hara-Rudy model [21]. The
control function u(n) is calculated by differentiating the action potential and scaling it to a
maximum value of 1 A/mm2.

2.4. Model Initialization

In the Model Initialization, the initial values for the delays τ (cf. Equations (5) and (6)),
the gains c (cf. Equation (7)), and the control vector b are computed based on the voxel
positions Pv = [pv,0

⊺, . . . , pv,Nv−1
⊺] and the voxel types ζ = [ζ0, . . . , ζNv−1]

⊺.
We consider six voxel types ζ in this study: sinoatrial node, atrium, atrioventricular

node, His-Purkinje system, ventricle, and pathological. These six types are the minimum
number needed to model the electrophysiology of the heart sensibly. They allow for a local-
ized excitation of the heart, a localized connection between the atria and ventricles, a coordi-
nated excitation of the ventricles via the His-Purkinje system, and a disturbed function via
the pathological voxels. The assumed connectivities between the voxel types [15,18,22,23]
are shown in Figure 2.

u Sinoatrial
Node Atrium Atrioventricular

Node

His-Purkinje
SystemVentriclePathological

Figure 2. Block diagram of the assumed connectivities between the six considered voxel types and
the input function u. The input function u is connected to the sinoatrial node. The other arrows
indicate allowed connections between neighboring voxels. For example, a direct connection from
atrium to ventricleis not allowed. Instead, the propagation has to pass through the atrioventricular
node and the HIS-Purkinje system before reaching the ventricles. Voxels of type pathological are not
connected to other voxels in this model and, therefore, never excited. (Figure adapted from [24]).

First, we calculate the delays τ(0) for all pairs of neighboring voxels based on their
positions p and the propagation velocity ϕ of the input voxel type ζi. For all voxels vi,
i ∈ [0. . . . , Nv − 1] and their up to 26 neighbors vo, the delay τ

(0)
i,o is calculated according to:

τ
(0)
i,o =

||pi − po||2
ϕ(ζi)

· fs. (8)

The variable τ
(0)
i,o describes the delay of the propagation from voxel vo to voxel vi

in samples.
Next, the gains C are calculated using an iterative algorithm. We use the symbol

Ci,o ∈ R3×3 to denote the nine gain entries that describe the propagation from voxel vo
to voxel vi. It is necessary to keep track of the activation times of each voxel. We denote
these as σ ∈ RNv . Furthermore, it is necessary to keep track of the current directions in
each voxel. We denote these as δ ∈ RNv×3. We initialize the activation time of the sinoatrial
node with σsinoatrial = 0 ms and calculate the others during the iterative procedure detailed
below. This ensures that the activation in the initial model starts in the sinoatrial node. We
arbitrarily choose the current direction of the sinoatrial node to be δsinoatrial = [1, 0, 0]⊺. The
entries of the gain matrix C are calculated by the following procedure.

1. The iteration time ti is set to 0 ms.
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2. For all voxels vo with an activation time σo equal to the iteration time ti the following
steps are carried out.

(a) Identify all neighboring voxels vi, that have not been connected yet.
(b) Discard all neighbors with incompatible voxel types (cf. Figure 2).
(c) Calculate the current direction in vi according to the following equation, where

pi is the position of the voxel vi and po it the position of the voxel vo:

δi =
pi − po

||pi − po||1
. (9)

(d) Calculate the gains Ci,o between two voxels vi and vo according to the following
equation:

cj,k = δi,j · sign(δo,k). (10)

The indices i and o are dropped for better readability and the indices j, k ∈
{0, 1, 2} are used to index the three by three matrix Ci,o.

(e) Calculate the activation time of the voxel vi as σi = σo + τi,o · Ts.

3. Set the iteration time ti to the smallest activation time σ that is bigger than the current
iteration time ti.

We repeat steps two and three until we do not find a new activation time in step three.
This procedure ensures that fast propagation paths are preferred, no voxel is activated
twice, and all voxels that can be connected are connected.

Since the control function is scalar, the control matrix B simplifies to a vector b ∈ R3Nv .
We set the entry corresponding to the x component of the current density of the sinoatrial
node to one and all others to zero.

2.5. State Estimation

The State Estimation uses a sparse Kalman filter to estimate the current densities Ĵ(i)

using the current model M̂(i) and the measurements Z. For each timestep, we carry
out the following steps. First, we predict the current densities ĵ(n|n − 1) by applying
Equations (5) and (7). Next, we predict the state covariance matrix P̂(n|n− 1) by applying:

pi,o = qi,o + ∑
k∈No

co,k ∑
m∈Ni

ci,m pm,k , o ∈ Ni. (11)

Since the gains c are defined only for neighboring voxels, the summations include
only said neighbors. We denote this with N . Then, the Kalman gain K(n) is computed
by applying:

si,o = ri,o +
3Nv−1

∑
k=0

ho,k ∑
m∈Nk

hi,m pm,k, (12)

ki,o =
Ns−1

∑
k=0

s−1
k,o ∑

m∈Ni

pi,mhk,m. (13)

We use s−1
m,o to denote the entry (m, o) of the inverse S−1. After that, we correct the

current densities ĵ(n|n) using the measurements z(n) by applying:

ĵ(n|n) = ĵ(n|n− 1) + K(z(n)− ẑ(n|n− 1)) (14)

Finally, we correct the state covariance matrix P̂(n|n) using the measurements z(n)
by applying:

pi,o = ∑
k∈No

pk,o

(
ii,k −

Ns−1

∑
m=0

ki,mhm,k

)
, o ∈ Ni. (15)
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2.6. Model Refinement

The Model Refinement uses the estimations of the current densities Ĵ(i) and the mea-
surements Z to adjust the modelM(i), yielding the refined modelM(i+1). To this end,
we calculate a loss function L(n) for each time step. Based on this loss we calculate the
gradients ∂L

∂c and ∂L
∂a . We then adjust the gains c and the all-pass coefficients a using these

gradients. The goal is to minimize the difference between the actual current densities J and
the estimated current densities Ĵ. Since we do not have access to the actual current densi-
ties J we minimize the difference between ground truth measurements Z and predicted
measurements Ẑ instead. We denote this part of the loss as Lm:

Lm =
1

Ns

Ns−1

∑
k=0

(zk − ẑk)
2. (16)

We place an electrophysiologically motivated constraint on the estimated current
densities to restain the possible solutions. The absolute current density in a voxel may be
lower than the one imposed by the control function u(n) due to the voxel not being fully
filled with myocardial tissue or changes of the myocardial tissue filling the voxel [16,25,26].
There is, however, no reason for the current density to exceed the nominal maximum value.
Therefore, we add a term to the loss that increases once the absolute current density in a
voxel || ĵv||1 exceeds the normalized value of 1.01, and is zero otherwise. We denote this
part of the loss as Lv:

Lv =
Nv−1

∑
v=0

max{0, (|| ĵv||1 − 1.01)2}. (17)

The final loss is the sum of both parts weighted by the regularization strength γ:

L = Lm + γLv. (18)

In order to update the gains c and delays τ, we have to calculate the respective partial
derivatives of the loss function. Starting with ∂Lm

∂c and applying the chain rule:

∂Lm

∂c
=

∂j
∂c

∂ẑ
∂j

∂Lm

∂ẑ
, (19)

we arrive at:
∂Lm

∂c
= yh⊺ 2

Ns
(ẑ− z), (20)

where y is the all-pass output corresponding to the gain c and h is the column of the
measurement matrix H corresponding to the current density j influenced by the gain c (cf.
Equation (7)). Next, ∂Lv

∂c evaluates to:

∂Lm

∂c
= 2 · y · sign

(
ĵ
)
·max{0, || ĵv||1 − 1.01} (21)

where y is the all pass output corresponding to c, ĵ is the estimated current density corre-
sponding to c, and ĵv are the three current densities, including ĵ corresponding to the voxel
influenced by c. For ∂Lm

∂a we can again apply the chain rule:

∂Lm

∂a
= ∑

y

∂y
∂a

∂j
∂y

∂ẑ
∂j

∂Lm

∂ẑ
, (22)

arriving at:
∂Lm

∂a
= ∑

y

∂y
∂a

ch⊺
y

2
Ns

(ẑ− z). (23)
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The summation over the corresponding all-pass outputs y is because the all-pass
coefficients are shared across nine all-pass filters that connect two voxels. Calculating ∂y

∂a is
done by applying the following iterative equations:

∂y
∂aIIR

(n) = y(n− 1) + a
∂y

∂aIIR
(n− 1), (24)

∂y
∂aFIR

(n) = j(n− k− 1) + a
∂y

∂aFIR
(n− 1), (25)

where ∂y
∂a = ∂y

∂aIIR
+ ∂y

∂aFIR
([27], Chapter 15). Lastly, since the parameters τ only influence

the propagation velocity, the regularization loss Lv is not used in the calculation of ∂L
∂a . In

other words, ∂Lv
∂a is set to zero.

Using these gradients we then update the gains c according to:

c(i+1) = c(i) − η

Nm

Nm−1

∑
n=0

∂L(i)

∂c(i)
(n) (26)

and the all-pass coefficients according to

a(i+1) = a(i) − η

Nm

Nm−1

∑
n=0

∂L(i)

∂a(i)
(n), (27)

where η is the learning rate.
The all-pass coefficient a is only valid for values between zero and one. If, after ap-

plying Equation (27), the coefficient a is less than zero, it is increased by one, and the
integer part of the delay (cf. Equation (5)) is also increased by one. If, on the other hand,
the coefficient exceeds one, we have to consider two cases. If the integer part of the delay is
at least one, we reduce the coefficient and the integer part by one. Otherwise, we set the
coefficient is set to one.

3. Simulations

The question we want to answer with the following simulations is if our state-space
current density estimation approach is able to localize regions of reduced electrical activity,
which would indicate the presence of arrhythmogenic tissue [28]. While our approach
can learn propagation paths and velocities from magnetic measurements, we focus on
the propagation paths in these simulations. The comparison with other sophisticated
approaches, as introduced in Section 1.2, remains challenging due to the lack of avail-
able source code. Therefore, we compare our results to the pseudoinverse solution (cf.
Equation (2)) instead. The current density estimation should yield results that facilitate
differentiation between healthy and pathological tissue. Therefore, we employ a simple
threshold-based segmentation.

3.1. Setup

To answer this question, we use an abstracted one-layer heart simulation as depicted
in Figure 3. The heart model consists 25× 37× 1 (x, y, z) voxels of size 2.5 mm, resulting in
a total heart size of 65 mm× 92.5 mm× 2.5 mm (cf. Figure 3a). This model represents the
unrolled surface of the heart. The voxel types are assigned based on the approximate shape
of the regions in the real heart to generate a morphologically sound sinus rhythm. We
differentiate between the ground truth modelM, used to generate the data, and the initial
model M̂(0). While the initial model assumes a healthy heart without any pathological
regions, the ground truth model includes a region without any conduction in the right
ventricle. We show the difference in voxel types between ground truth and the initial
model in Figure 3c. The assumed propagation velocities are 1.1 m/s for the sinoatrial
node, atrium, and ventricle, 0.012 m/s for the atrioventricular node, and 4.5 m/s for the
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HIS-Purkinje system. While these values are simplified, we based them on values reported
in literature [15,18,22,23]. We run both models for a simulation time of 1 s with a simulation
frequency of 2000 Hz.

Setup

Ty
pe

s
C

ur
re

nt
 D

en
sit

ie
s

M
ea

su
re

m
.

Ground Truth

(a)

(d)

(g)

(j)

Initial Model

(b)

(e)

(h)

(k)

Delta

(c)

(f )

(i)

(l)

Figure 3. Overview of the used simulation setup. (a) Voxel types of the ground truth model: The
colors of the voxels correspond to their type as depicted in Figure 2. A region of pathological tissue
is present in the right ventricle. (b) Voxel types of the initial model: The initial model assumes a
healthy heart without any pathological regions. (c) The difference in voxel types: red regions stand for
differences between the ground truth and initial model. Green regions stand for equalities. (d–i) The
L1-norm of the current densities in each voxel. (d–f) During the time of the maximal difference
between ground truth and initial model (t = 0.3675 s). (g–i) The maximum of this L1-norm over the
complete cardiac cycle. (j–l) The simulated magnetic fields z around the time of the QRS-complex.
The black dashed line corresponds to the time of the maximum difference between the ground truth
and the initial model (t = 0.3675 s).
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Figure 3d,e depict the L1-norm of the simulated current densities in each voxel for
t = 0.3675 s. At this time, the propagation already passed through the HIS-Purkinje system
and is spreading outwards through the ventricles. The propagation is symmetrical for the
initial model, while the ground truth has no electrical activity in the pathological region.
Figure 3f shows the difference in these L1-norms. The current density in the initial model
is higher than in the ground truth model in the region of the pathology. Since we cannot
show all time steps in this fashion, Figure 3g–i show the maximum over these L1-norms
during the complete cardiac cycle. While this maximum is constant over all voxels in the
initial model, the ground truth model has no electrical activity in the pathological region
for the complete cardiac cycle.

We use a 4× 4× 3 array of ideal magnetic sensors. The sensors are placed equally
across a 250 mm× 250 mm× 100 mm region centered 200 mm above the heart. Since we
simulate one layer of voxels, the measurements have to be scaled up to match reasonable
field amplitudes as reported in [29–31]. We scale the measurements by a fixed factor of
70 to achieve a maximum R-peak amplitude of 100 pT for the ground truth model. We
then superimpose the simulated signals with white noise of an equivalent noise spectral
density of 40 fT/

√
Hz, which is in the order of low temperature superconducting quantum

interference devices (SQUIDs) [8]. Figure 3j–l depict the magnetic measurements around
the time of the QRS-complex. The dashed black line indicates the time of the maximum
difference (22.5 pT) between the ground truth and the initial model at time t = 0.3675 s.

The number of voxels is Nv = 962, resulting in 2886 system states. The number of
sensors is Ns = 144, which is on the high end in the number of sensors of available MCG
systems [29].

3.2. Results
3.2.1. Pseudoinverse

Figure 4 summarizes the results of the pseudoinverse solution. Since the number
of unknown values greatly exceeds the number of knowns, the differences between the
predicted measurements and the ground truth are vanishingly small. The same, however,
can not be said for the current densities. Here, no discernable structure is present. This
solution favors using the outer voxels to reconstruct the magnetic measurement, but no
segmentation into healthy and pathological tissue is possible based on these results.
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Figure 4. The results of applying the pseudoinverse solution to the data generated by the ground truth
model introduced in Figure 3. (a) The estimated measurements in pT. (b) The difference between
the predicted measurements and the ground truth measurements (cf. Figure 3j). (c) Maximum of the
L1-norm of the current densities in each voxel over the complete cardiac cycle. (d) The difference
between these maxima and those of the ground truth (cf. Figure 3g).



Bioengineering 2023, 10, 1432 11 of 15

3.2.2. State-Space Approach

Figure 5 summarizes the results of the state-space approach. We optimized the model
for 2000 epochs with a learning rate of η = 200 and a regularization strength of γ = 1.
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Figure 5. The results of the nested state-space optimization procedure after 2000 epochs. (a) The loss
over the first 500 epochs. (b) The estimated magnetic measurements in pT. (c) The difference between
these estimates and the ground truth (cf. Figure 3j). (d) Maximum of the L1-norm of the current
densities in each voxel throughout the cardiac cycle. (e) The difference between these maxima and
those of the ground truth (cf. Figure 3g). (f) The DICE score for different segmentation thresholds.
A threshold of 0.88 achieves the maximum DICE score of 0.84. (g) The predicted voxel types for a
threshold of 0.88. The color-coded regions stand for: green—true positive (TP), blue—true negatives
(TN), orange—false positive (FP), and red—false negatives (FN).

Figure 5a shows the loss function for the first 500 epochs. Although the loss decreases
slightly until the last epoch to a final value of 5.8× 10−5, the maximum decrease happens
in the earlier epochs. The maximum of the measurement differences decreases significantly
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from around 20 pT to 1 pT. The differences in current densities to the ground truth in
pathological tissue regions are significantly reduced, while differences in healthy regions
increase slightly.

Figure 5f,g show the results of the simple threshold-based segmentation. The segmen-
tation compares the maximum L1-norm in each voxel to a threshold. We classify the voxel
as pathological if the L1-norm is below a threshold. Otherwise, we classify it as healthy.
Based on this segmentation, a DICE score is calculated. Figure 5f shows this DICE score
for all thresholds from 0.6 to 1.0. A threshold of 0.88 achieves the maximum DICE score
of 0.84. Figure 5g shows the results of a segmentation based on this optimal threshold.
Most pathological voxels are correctly classified. We achieve a recall of 0.77. Not many
healthy voxels are incorrectly classified as pathological, achieving a precision of 0.93. All
false positives (FP) are adjacent to the actual pathological region.

Executing one epoch of this algorithm takes around 1 s on an M2 MAX processor,
using a single core. The algorithm is mostly converged after 500 epochs or 8 min. All 2000
epochs take around 30 min.

3.3. Discussion

We simulated a single layer of tissue leading to a relatively small number of voxels. At
the same time, the number of sensors is on the high end for MCG sensor systems. Even in
these favorable circumstances, the naive solution of using the pseudoinverse is not feasible.
More sophisticated approaches are needed to extract useful information about the current
density distribution in the human heart from non-invasive measurements.

While our state-space approach is not able to perfectly reconstruct the ground-truth
current densities, the results show a clear structure. Throughout the optimization, the differ-
ence between the estimated magnetic measurements and the ground-truth measurements is
reduced. The same holds for the current densities. The optimized model shows a reduced
maximum current density in the pathological region of the ground truth model. For a
perfect reconstruction, the maximum current density in this region would have to be zero.
The optimized model only reduces the maximum to around 0.5 A/mm2 in this region. At
the same time, the maximum current density is also slightly reduced in regions that do not
correspond to the pathological region in the ground truth model. The most obvious reason
for this is that while our state-space approach applies a strong regularization and bias on
the estimated current densities, the ill-posedness of the problem still leads to non-unique
solutions. An extensive hyperparameter optimization over the learning rate, regularization
strength, and Kalman parameters is expected to improve these results. With a DICE score of
0.84, segmentation solely based on the maximum current densities in each voxel is possible.
These findings prove, that it is possible to differentiate between pathological and healthy
tissue for this simplified model. This does suggest that regions with reduced electrical
activity could also be found in real hearts, given sufficient measurements.

There are currently several limitations to our approach. First, we do not explicitly
model any secondary currents caused by return paths. The update step of the State
Estimation block implicitly calculates the return currents that flow through the myocardium.
Our model cannot describe currents outside these voxels. Second, magnetic sensors do
not measure the magnetic field perfectly. They only have a limited linear region and a
non-flat frequency response [29]. Furthermore, they do not measure the magnetic field
at one point but accumulate it over their sensing area. Third, there is a gradient in the
refractory period in the myocardium [32]. Our model cannot capture this aspect of the
electrophysiology of the heart. The control function encodes the de- and repolarization
phases of the action potential. Since both are propagated using the same parameters,
the refractory time cannot be varied depending on the location of the voxel. Since the
signal generated by the depolarization phase is dominant over the one generated by the
repolarization phase, the expected impact on the localization of arrhythmogenic tissue
is low.
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In order to apply this algorithm to patient data the following steps have to be taken.
First, generating the spatial model of the patient’s heart requires a segmented MRI scan.
Manual segmentation is feasible for proof of concept studies. For widespread application,
automatic segmentation [33] is needed to reduce the time effort. Second, the initial prop-
agation velocities can be estimated using characteristic times of the measured MCG. For
example, researchers can use the P-wave’s duration and the spatial extent of the atrium to
calculate the average propagation velocity in this area. After this, one can apply the algo-
rithm as outlined in this paper. The resulting estimated current densities can then inform
the decisions of medical professionals. With an execution time of 30 min, the algorithm is
viable in clinical practice. The execution time will increase when applied to a whole heart
instead of just one layer. There are, however, still opportunities to speed up the algorithm
by using multithreading or fine-tuned code optimization. Another practical concern is
that body movements (mainly respiration-induced) cause a subtle time-varying position
change of the sensor array towards the heart. However, magnetic localization approaches
(as conceptualized in [34]) can provide the position data required to compensate for such
artifacts. While most clinics have access to MRI systems, they rarely have access to MCG
systems [35]. An extension of our algorithm to also work for the more readily available ECG
data would necessitate the extension of the forward model, including the consideration of
the torso geometry and permittivities [8–10].

4. Conclusions

This paper introduces a novel state-space algorithm for the non-invasive estimation
of cardiac current densities from MCG signals, allowing for arbitrary propagation paths
and velocities. We demonstrated the algorithm’s ability to differentiate between healthy
and pathological tissue in a simulated environment. Segmentation with the optimal
threshold achieves a DICE score of 0.84. The presented results prove the ability to learn
propagation paths from magnetic measurements. An extension of the algorithm to deal with
the current limitation and apply it to patient data is feasible. Potentially, the algorithm can
non-invasively localize arrhythmogenic tissue in clinical settings after further development.
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